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The behavior of the average velocity for a classical particle in the one-dimensional Fermi accelerator model
under sawtooth external force is considered. For elastic collisions, it is known that the average velocity of the
particle grows unlimitedly because of the discontinuities of the derivative of the moving wall’s position with
respect to time. However, and contrary to what was expected to be observed, the introduction of a friction force
generated from a slip of a body against a rough surface leads to a boundary separating different regions of the
phase space that yields the particle to either experience unlimited energy growth or suppression of Fermi
acceleration. The Fermi acceleration is described by using scaling arguments. The formalism presented can be
extended to two-dimensional time-dependent billiards as well as to higher-order mappings.
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Since the discovery of the cosmic rays in the last century
�1� a big effort has been employed on the study and under-
standing of this kind of radiation. However, the physical
mechanism of the acceleration process of the high-energy
cosmic rays is still to be understood. The so called cut-off
energy �the upper limit on the energy that cosmic ray retains�
is another phenomena of recent investigation �2–5�. More-
over, it is unknown whether the cutoff occurs due to propa-
gation effects or due to physical limitations of the accelera-
tion process �6�. All these facts suggest that the subject
deserves further investigation and therefore many models
have been proposed and studied along last decades.

In 1949, Fermi �7� launched the idea that a possible
mechanism was related to scattering of a cosmic particle
with a time moving magnetic field. His original idea was
later investigated generating many mathematical models and
producing a wide class of interesting results with applicabil-
ity in tokamaks �8,9�, waveguide �10,11�, time-dependent os-
cillating square wells �12,13�, chaotic dynamics and phase
transition �14�, and many other.

One of the mathematical models �15� considers that the
cosmic ray is replaced by a classical particle and that the
time varying magnetic field is described by an infinitely
heavy and periodically moving wall. The returning mecha-
nism of the particle for a next collision with the moving wall
is made by a fixed and rigid wall. Indeed, if the particle
travels freely between the two walls and the position of the
moving wall is given by xw=� cos��t+�0�, where � is the
amplitude of oscillation, � is the frequency of oscillation,
and �0 is an initial phase, it is known that the phase space of
this model presents a mixed structure. Therefore it is ob-
served fixed points involved by Kolmogorov-Arnold-Moser
�KAM� islands, regions of nondissipative chaotic motion
�chaotic seas� and invariant spanning curves �also called as
invariant tori�. The first chaotic region is limited by the
lowest-energy spanning curve. The presence of the spanning
curves limits the values of velocity and hence the energy of
the particle is bounded, consequently no Fermi acceleration
�FA� is observed �15,16�. The phenomenon of FA is a pro-
cess in which a classical particle acquires unbounded energy
from collisions with a heavy moving wall.

The mixed structure of the phase space is totally de-
stroyed if dissipation is introduced. If the particle experi-
ences a fractional loss of energy upon collision with the
walls, the invariant spanning curves are destroyed. The ellip-
tic fixed points turn into sinks. Depending on the control
parameters, boundary crisis can be characterized via crossing
of stable and unstable manifolds. For the limit of high dissi-
pation, it is possible to observe bifurcation cascades. For the
dissipative dynamics, attractors are created in the phase
space. Hence FA is not observed. If one consider the motion
of the moving wall to be random, the nondissipative dynam-
ics yields in the unlimited energy growth �17�. However, the
introduction of inelastic collisions is a sufficient condition to
suppress FA �18–20�. Other kind of dissipation assumes that
the particle is moving in the presence of a drag force such as
gas. Such dissipation acts along the full trajectory of the
particle and is contrary to the inelastic collisions which act
only in the instant of the impact. For the case of damping
force proportional to the particle’s velocity, the phenomenon
of FA is suppressed �21�.

In this work we revisit the dynamics of a classical particle
in the one-dimensional Fermi accelerator model under an
external force of sawtooth type seeking to understand and
describe a competition between FA and suppression of FA.
The choice of such an external perturbation of sawtooth type
is because the oscillating wall always furnishes energy to the
particle after each collision. Thus in the absence of any dis-
sipation, FA is feasible. The main question to be answered is:
does the FA remains observed under the presence of a fric-
tion force generated from a slip of a body against a rough
surface? The answer is not so simple and we will show it
depends on the initial conditions as well as on the control
parameters. Thus, our main goal in this paper is to investi-
gate the consequences of dissipation due to friction in the FA
process. Our results can be extendible to many other models
including a wide class of two-dimensional time-dependent
billiards.

Regarding the moving wall we discus two situations: �i�
the case where the wall presents stochastic motion and �ii�
the case where the wall moves according a sawtooth expres-
sion. We will discuss the first situation later. Let us now
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regard the second situation, where the wall moves according
to the expression xw�t�= ���t�+X0�mod�2��−�. The symbol
� represents the amplitude of motion, � is the frequency of
oscillation, t� is the time, and X0� �0,2�� defines the initial
position of the wall xw�t�=0�. According to this expression,
the moving wall oscillates between the positions x=−� and
x=�. The fixed wall is at position x= l. In terms of dimen-
sionless variables we have that X=x / l and V=v / �l�� furnish
the position and velocity of both particle and wall. In addi-
tion �=� / l and t=�t� are the amplitude of oscillation of the
moving wall and time. In terms of this set of variables the
velocity of the wall is fixed as Vw=� and we have that
�0=X0 / l� �0,2��.

If we take into account nondissipative dynamics, the ve-
locity and hence the kinetic energy of the particle increases
at each collision with the moving wall. Therefore, the mov-
ing wall always gives energy to the particle and such system
represents a good prototype to produce FA. The velocity of
the particle after each collision is given by

Vn+1 = Vn + 2� = V0 + �n + 1��, n � 0. �1�

On the other hand, if dissipation is introduced, the dynam-
ics of the particle has a profound modification. In particular,
the results might reveal presence or lack of FA, depending on
the intensity of dissipation as well as on the amplitude of
oscillation and also on the initial conditions. The dissipation
we are considering occurs when a body slips on a rough
surface. This kind of dissipation acts in a body throughout its
entire trajectory. Thus, while the particle moves between the
walls, a constant force F= ��mg acts on the particle then
decreasing its energy. Here m is the particle’s mass, g is the
gravitational acceleration, and � is the kinetic friction coef-
ficient. The force F is contrary to the particle motion. The
plus sign corresponds to the situation where the particle
moves from the right to the left and the minus sign when it
moves backward. From second Newton’s law of motion, it is
easy to find the position of the particle in time as
X�t�=X�t0�+V�t0�t�

1
2	t2, where X and 	=�g / ��2l� are the

dimensionless position and acceleration of the particle, re-
spectively. For 	=0 all results for the nondissipative case are
obtained.

Using dimensionless variables, the motion of the particle
is described by a two-dimensional map of the type

T:�Vn+1 = �Vn
2 + 2	�Xn + Xn+1� − 4	 + 2�

tn+1 = tn +
1

	
�Vn − �Vn

2 − 4	� , � �2�

where Xn+1 is the position of particle, and hence of the mov-
ing wall, at the instant of collision �n+1�th.

Since we are looking at conditions to suppress or not FA,
the natural observable to be characterized is the average ve-

locity. It is shown in Fig. 1 the behavior of V̄
n for V0=1,
	=9
10−4, and different values of �. The average velocity

is obtained as V̄=1 / �n+1��i=0
n Vi. A striking result that

emerges from Fig. 1 is that FA might either be observed or

not for 	�0. The curves of V̄ depend on the control param-
eters and initial velocities. In Fig. 1�a� it is clear the depen-

dence on the control parameter. The dependence on the ini-
tial velocity will be discussed latter. Basically, we observe
that the average velocity stays almost constant for a long
time and then it might rises or decreases. If the velocity
decreases the particle reaches the rest. On the other hand, if
FA is observed, after a characteristic changeover from a con-

stant velocity to a regime of growth, the curve of V̄ grows

with a law of the type V̄�n. We see that different control
parameters generate different curves. However, a rescaling in
the horizontal axis is sufficient to merge all the curves onto a
single curve, as it is shown in Fig. 1�b�.

Let us discuss the dependence of the FA on the initial
velocity. It is expected that there must exist some relation
between the initial velocity, V0, and parameters � and 	,
which characterizes the transition from unlimited energy
gain to completely energy dissipation. We now describe this
transition.

The limit situation occurs when the amount of dissipated
energy is exactly furnished to the particle by the moving
wall. In this case the velocities after each collision satisfy the
relation Vn+1=Vn=Vc. Because Xn� �−� ,�� we have that
2	�Xn+Xn+1�� �−4	� ,4	��. Therefore, regarding the veloc-
ity expression in map �2� and considering the extreme pos-
sibilities of 2	�Xn+Xn+1�, we obtain the velocities V− and V+

V− =
�2 + 	�1 − ��

�
, V+ =

�2 + 	�1 + ��
�

. �3�

In this sense we observe that for V0�V− the energy fur-
nished by the moving wall to the particle at each collision is
smaller than the energy dissipated across the trajectory.
Therefore after some time the particle losses all its energy,
stopping between the two walls.
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FIG. 1. �Color online� �a� Average velocity curves for V0=1,
	=9
10−4, and different values of �, as labeled in the figure. �b�
Collapse of some curves shown in �a� after a suitable rescale in the
horizontal axis.
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On the other hand, for V0
V+ the amount of energy fur-
nished by the wall at each collision with the particle is larger
than the energy dissipated due to the friction between two
impacts with the moving wall. Therefore, the system presents
a net increase in particle’s velocity after each collision, re-
sulting in FA.

For the intermediate situation where the initial velocity of
the particle lies in V−�V0�V+, the energy of the particle
might grows without limits or not. Basically it depends on
the combination of initial conditions �0 and V0. Figure 2
allows us to understand the general behavior of the velocity
curves for this situation. We used �=10−3, 	=10−3,
and defined a grid of 600
600 initial conditions with
V−�V0�V+ and 0��0�2�. For each initial condition, map
�2� was iterated and the asymptotic behavior of the trajectory
of the particle was analyzed. If the velocity of the particle
becomes greater than V+, then the particle presents FA. If the
velocity becomes smaller than V− then the particle loses all
its energy. In this way the white color in Fig. 2�a� corre-
sponds to the initial conditions for which FA occurs. The
blue �dark� color in Fig. 2�a� represents the initial conditions
for which the iteration of map �2� results in total energy
dissipation. Hence the particle stops between the walls after
colliding against the moving wall nmax times. The value of
maximum collisions number nmax depends on the initial con-
ditions. The color �gray� patterns used in Fig. 2�b� illustrates
the maximum collision number nmax before the particle’s ki-
netic energy is completely absorbed. The black line in Fig.
2�b� corresponds to the border that separates the suppression
from the FA phenomena and corresponds to the numerical
approximation of Vc for those parameters values.

We now discuss a scaling present for the average velocity
as function of the control parameters and initial conditions,
then leading to FA for the limit of V0�V+. First it is impor-

tant to understand the dependence of V̄ as a function of vari-
able n, parameters �, 	, and initial velocity V0. We initially
kept fixed �=10−3, V0=10 and performed some simulations

of V̄
n for different values of 	 as shown in Fig. 3�a�. We

note that different values of 	 seem not to affect the V̄
curves. Therefore 	 is not considered in the scaling analysis.

Figure 3�b� shows four curves of V̄ for 	=10−5 and different

values of � and V0. For small values of n we observe that V̄

is constant and does not depend on �. Moreover, in this ini-
tial plateau, V̄	V0. For large values of n, V̄ depends on n
and � according to V̄�n�g���, where � is the growth expo-
nent and g is a function of �. The changeover from the re-
gime of constant value to the growth regime of V̄ is marked
by a characteristic crossover nx given by nx��z1V0

z2, where z1
and z2 are dynamical exponents.

The exponent � is obtained via a nonlinear fit in the

growth regime. The average value we obtained for 55 V̄
curves with �� �10−5 ,10−2� and V0� �100 ,9
102� is
�=0.9972�7�. Figure 3�c� shows a log-log plot of

g���= V̄ /n� as function of �. Performing power-law fittings
to the numerical data we obtain g������ with �=0.969�5�.
In order to obtain the exponents z1 and z2 we performed two
sets of simulations. Figure 3�d� shows the crossover nx for
different values of � with fixed V0=10. Applying power law
fittings to the numerical data we obtain z1=−0.991�1�. Simi-
larly, we performed a set of simulations with fixed �=10−3

and different values of V0. Figure 3�e� displays the results.
The best fit to the numerical data furnishes z2=1.00�2�.

With the above hypotheses we suppose that V̄ obeys a

homogeneous function of type V̄�n�� ,V0�= lV̄�lan�� , lbV0�,
where l is a scaling factor and a and b are scaling exponents.
We show that � is related to the critical exponents �, �, and

z1. Choosing l=V0
−1/b we obtain V̄�n�� ,V0�=V0

−1/bf�V0
−a/bn���.

From this expression we find nx��−�V0
a/b. Hence z1=−� and

z2=a /b. Considering n�nx, where V̄ is constant, we obtain

(b)(a)

FIG. 2. �Color online� �a� Combinations of initial conditions for
which the particle experiences FA, white region, and for which the
particle losses energy until to reach the rest, blue �dark� region. �b�
The white region corresponds to combinations of initial conditions
that results in Fermi acceleration and the regions with different
color �gray� patterns illustrate the maximum collision number
before the total energy dissipation. The values of parameters are
�=10−3 and 	=10−3.
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FIG. 3. �Color online� �a� Behavior of V̄
n for �=10−3,

V0=10, and different values of 	, �b� behavior of V̄
n for
	=10−5 and different values of � and V0. �c� Log-log plot of

g���= V̄ /n� as function of �. �d� The best fit to the numerical data
on the nx versus � plot furnishes z1=−0.991�1�. �e� Log-log plot of

nx as function of V0. �f� Collapse of V̄ curves of �b� onto a single
and universal curve.
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b=−1. For n�nx we have f = �V0
−a/bn����. Thus we find

�=�, a=−1 /�, and �=� /�. Therefore we have
a=−1.0028�7� and �=0.972�6�. Applying appropriate scaling
transformations along the axis of Fig. 3�b� we show that all
curves merge together onto a single and universal curve, as
shown in Fig. 3�f�. This result confirms that, for any combi-
nation of � and V0 above the critical region where FA is
suppressed shall experience basically the same general be-
havior.

Let us now discus the situation where one of the walls
exhibit stochastic motion. It is well known that FA is also
observed for the nondissipative stochastic Fermi based sys-
tems �17,22,23�. Someone can ask about the presence or lack
of FA when the frictional dissipation for the stochastic
Fermi-Ulam model is considered. Thus instead of the wall to
furnish an increment 2� in velocity at each collision �Eq.
�2��, we regard the situation where the moving wall furnishes
an increment 2z to the velocity of the particle, where z as-
sumes a random value in the interval �−� ,��. In this case the
velocity of the particle after the collision �n+1�th is
Vn+1= 
�Vn

2+2	�Xn+Xn+1�−4	+2z
 and the expression of
tn+1 is the same as shown in Eq. �2�. The absolute value bars
in the velocity expression prevent the particle to leave the
region between the walls.

Figure 4 shows the velocity after each collision as func-
tion of n for two initial conditions and for both sawtooth and
stochastic motion for V0 greater than V+ �expression �3��. We
considered �=10−2 and 	=10−5. When the wall moves ac-
cording to the sawtooth expression the particle experiences
FA, as discussed before. When the wall moves stochastically
we observe for some intervals of n that the velocity
decreases while it increases for other intervals of n.
After n= i collisions with the moving wall the particle’s
velocity matches the condition Vi�Vmin, where Vmin
=�2	�2−Xn−Xn+1�. Then the particle stops between the
walls and the time to the collision i+1 diverges. For the
stochastic case if the particle’s velocity has a finite value,
then the particle stops after some collisions.

Note that a similar discussion applies to the situation

where the wall moves according to a sine function
�15,24,25�. Similarly to the stochastic case, the velocity of
the particle eventually becomes small and the particle loses
all its energy.

As a final remark, we have considered a dissipative ver-
sion of the one-dimensional Fermi accelerator model with
sawtooth external perturbation in the presence of a dissipa-
tive force generated from a slip of a body against a rough
surface. We showed that there exists a critical line that sepa-
rates a region of total energy dissipation from a region where
all initial conditions produce FA even in the presence of dis-
sipation. Moreover, the behavior of the velocity curves is
scaling invariant. Our results confirm that FA is sensible to
the type of dissipation considered. In particular, a dissipation
introduced via a friction force generated from a slip of a
body against a rough surface is not a sufficient condition to
suppress FA generically, but then it does happen under spe-
cific conditions.
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